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Abstract--This paper extends to electrical machines the thermodynamics and heat transfer optimization 
approach that has been developed for heat engines. Four models of thermodynamically irreversible electrical 
motors with heat transfer to the ambient are proposed and optimized : general reversible motor in series 
with its resistance, induction motor with transformer, synchronous motor with transformer and direct 
current motor. The conversion efficiency at maximum power is 1/2. When, as in specific applications, the 
operating temperature of the windings must not exceed a specified level, the power output is lower and the 
efficiency higher. In the case of an electrical power generator it is shown that the generator and the heat 
engine that drives it can be optimized separately for maximum power. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

A noteworthy trend in modern heat transfer is the 
use of thermodynamic principles in close combination 
with heat and mass transfer and fluid mechanics prin- 
ciples [1]. The objective of such work is to develop 
fundamental models and optimization results (trade- 
offs, extrema) for real (irreversible) devices and pro- 
cesses. This growing body of literature is extremely 
diverse [1]: recent applications include the opti- 
mization of sensible-heat storage [2], heat transfer 
augmentation techniques [3], mixed convection in a 
vertical duct with baffles [4], and the burning of a 
droplet in a stream [5]. This field was reviewed on 
several occasions (e.g. refs. [1, 6-8]): an important 
part of this work refers to the modeling of irreversible 
heat engines and refrigerators, with the objective of 
determining the operating conditions for maximum 
power output from heat engines, and minimum power 
input for refrigerators. 

Heat engines and refrigerators are representative of 
the class of thermomechanical power converters. On 
this background, in this paper we extend fun- 
damentally the modeling method and optimization 
procedure to electromechanical power converters such 
as electrical motors and power generators. Elec- 
tromechanical devices transform one form of work 
into another (conversion of energy from electrical into 
mechanical, or vice-versa). Two energy trans- 
formations are involved : between the electrical circuit 
and the magnetic field, and between the magnetic field 
and the mechanical system. The conversion is partial 
because of the intrinsic thermodynamic irreversibility 
of the electrical circuits that are built into the machine. 
The lone heat interaction occurs between the machine 
(e.g. armature windings and ferromagnetic core) and 
the ambient. The purpose of this interaction is to reject 

to the atmosphere the portion of the input power that 
is destroyed through the irreversible operation of the 
machine. 

The single temperature reservoir and single heat 
transfer interaction distinguish electromechanical 
converters from the heat engines and refrigerators that 
have been studied in the past. Nevertheless, as we 
begin to show in the next section, a most basic analogy 
exists between the maximum power conditions of elec- 
tromechanical and thermomechanical conversion sys- 
tems. The analogy begins with the observation that 
the two electric potentials of an electric motor play 
roles similar to the temperature reservoirs of a heat 
engine (note: temperature reservoirs, not 'heat' res- 
ervoirs: see also the concluding paragraph of the 
paper). 

ELECTROMECHANICAL VS 
THERMOMECHANICAL CONVERTERS 

The simplest way to illustrate the analogy between 
the maximum power conditions of electromechanical 
converters and thermomechanical converters (heat 
engines) is by analyzing the electrical circuit shown 
on the left side of Fig. 1. The power source delivers 
the current I at the voltage V~. A reversible electrical 
motor receives power at the voltage 1/": through a 
constant electrical resistance R, separated from the 
conservative part of the machine. The ground voltage 
is V0. 

The question we address is how to maximize the 
power output of the motor, namely 

I4/= V ~ I - R I  2 - VoL (1) 

The terms on the right side represent, in order, the 
power drawn from the V~ source, the power destroyed 
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NOMEhlOLATURE 

a number of armature circuits in parallel 
A heat transfer area 
E back electromotive force 
I current 
km, k t transformer ratios of motor and 

transformer 
n rotational speed 
N number of winding conductors 
p number of pole pairs 
R resistance 
T temperature 
U overall heat transfer coefficient 
U voltage difference 
V voltage 

power 

X leakage reactance. 

Greek symbols 
AU brush contact voltage 
~/ efficiency 
(I) magnetic flux per pole. 

Subscripts 
a armature 
cm core of motor 
e effective 
f friction 
max maximum 
opt optimum 
s shaft, synchronous. 

Electromechanical 
power conversion 

V1 

R 

V 2 

V0 

Thermomechanical 
power conversion 

~ Q 

source source 

electrical thermal 

resistance UA I T 2  resistance 

reversible ~ reversible 
electrical W heat 
motor engine 

ground ambient 

 (v0) 
T~ "T ,1/2 

Fig. 1. Simple model of an electrical motor with its resistance in series, and the analogy between the 
maximum-power operation of electromechanical and thermomo~hanical power converters. 
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by Joule heating in the line resistance, and the elec- 
trical power that enters the ground node. The core 
losses and mechanical friction losses are neglected. 
Equation (1) shows that the power output W is zero 
in two extremes, at zero current (I  = 0) and at zero 
voltage difference [II2 = Vo, I = ( V I - V o ) / R ] .  The 
maximum power, 

[~ma~ - ( V t  - Vo)  2 

4R 

occurs at the intermediate current 

V1 -- Iio 
/ o p t  - -  2R 

Under the same conditions, the voltage difference 
across the motor is exactly half of the voltage differ- 
ence between source and ground, 

(V2 - V0)opt l = ~(VI - Vo). 

The efficiency of converting the power drawn from 
the source into maximum mechanical power output, 
n = ~rmax/(Vl/opt), is 

INDUCTION MOTOR WITH TRANSFORMER 

Figure 2 shows an induction motor connected to the 
three-phase a.c. power supply through a transformer. 
The power drawn from the network is characterized 
by V and / ,  which are the effective voltage and current 
per phase. The transformer ratio k t is given, kt = 1I/Ut. 
In this definition, U~ is the voltage across the terminals 
of the secondary winding of the transformer, or of the 

(2) stator of the induction motor. The current in the stator 
is Ii = L The transformer ratio km of the motor is also 
known, k m = U1/U2. If  we neglect the core losses in 
the motor, the transversal part of  the electrical scheme 
of Fig. 2 vanishes, the magnetizing current becomes 
zero, and 

(3) 
k , , / 2  12 

- -  -~ - - ,  ( 6 )  
I ~  - Ii 

where I~ and/2 are the rotor phase current referenced 
to the motor primary and the real phase current. We 
also assume that the rotational speed of the shaft does 

(4) not vary appreciably. Consequently the power factor 
for this type of motor is small (cos ~o ~ 0 .7 . . .  0.8) and 
does not change significantly as the current varies and 
the terminal voltage is kept constant. 

The equivalent electrical circuit of the transformer 
and motor combination is shown in the lower part of 
Fig. 2. All the parameters indicated on this circuit 

(5) have been referenced to the transformer primary 
through the relations 

The maximum power conditions (2)-(5) hold for 
d.c. and a.c. circuits as well. The heat engine analog 
of the electrical system optimized above is shown on 
the right side of Fig. 1. A reversible heat engine 
receives heat from the temperature T~ through a heat 
exchanger of area A and overall heat transfer 
coefficient U. The cold end of  the heat engine is in 
equilibrium with the ambient To. The maximum power 
conditions of the heat engine with thermal resistance 
are well known [1, 8-11]: listed in Fig. 1 are the 
conversion efficiency r /=  1 -  (To/TI) 1/2 and the ratio 
of the temperatures that sandwich the heat engine. By 
comparing the two sides of Fig. 1, we see at one glance 
the analogy between maximum power output in elec- 
tromechanical and thermomechanieal converters. It is 
interesting that the ratio 1/2 appears as an exponent 
in the heat engine formulas, and as a factor in the 
electrical motor formulas. It can be shown that the 
efficiency listed in equation (5) does not change if an 
electrical resistance is added between the motor and 
the ground : this finding is analogous to the maximum 
power efficiency formula of heat engines with hot-end 
and cold-end thermal resistances. 

In the next five sections we develop the maximum 
power conditions for several classes of the most com- 
mon electrical machines that are in use today. To 
simplify the analysis we use the electrical engineering 
convention of writing zero for the ground voltage, 
instead of V0. 

X'2t = k2t X2t R'2t = k2, R2t (7) 

X ' . .  = k2tX, m R'~,~ = k~R,m R'2m = k2tk2mR2m. 

(8) 

Parameters X2t, R2t, XIm, Rm and R2. represent, in 
order, the transformer secondary leakage reactance, 
transformer secondary resistance, motor primary 
leakage reactance, motor primary resistance and 
motor secondary resistance. 

Finally, the equivalent circuit of Fig. 2 shows that 
the power output of the motor can be written as 

W = 3 V/cos ~o - 3RoI 2 - Wf. (9) 

On the right side P~ is the equivalent resistance 
Re = Rl t+k2t (R2t+R~m+k~R2m),  and I~fis the mech- 
anical power destroyed by shaft friction. As noted 
earlier, we treat cos ~0 and Wras independent of / ,  and 
maximize W with respect to I ;  the results are 

3V 2 V 
I~max- 4R cos2~p--14/r /opt =~-~cos~p.  

( 1 0 )  

If  the transformer is absent and the induction motor 
is optimized alone, then equations (10) continue to 
apply, provided Re = Rlm+k~R2m.  The cor- 
responding efficiency ratio t / =  Wmax/(3 Vlopt COS ~p) is 
essentially equal to 1/2, 
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transformer 

induction 
motor 

I Rlt Xlt  X'2t R'2t R ' lm 

v Ul 

O O 

X "1 m X "2m R "2m 

RO ~ X  0 R - - ~ W  

Fig. 2. Induction motor with transformer, and the equivalent electrical circuit of the combined system. 

l g/, l 
= - -  = -  ( ] l )  

q 2 (3 V:/2R¢) cos z ~0 2 

because the power destroyed by shaft friction is 
expected to be much smaller than the power drawn 
from the source. 

The maximum power output (10) increases as the 
equivalent-circuit resistance Re decreases. This feature 
is analogous to the dependence between the maximum 
power of a power plant and the total thermal resist- 
ance of the heat exchangers (e.g. ref. [8, p. 410]). It is 
also worth noting that traditionally, induction motors 
are designed at operating currents significantly lower 
than -/opt of equation (10) [12], which means that the 
power output if/ and the associated Joule heating 
losses are much lower than in the maximum-power 
design equations (10) and (11). This is why the elec- 
tromechanical power conversion efficiency of tra- 
ditional designs is higher (q ~ 0.8. . .  0.95, depending 

on power) than the maximum-power efficiency 
r/-~ 1/2 determined in equation (11). 

SYNCHRONOUS MOTOR WITH TRANSFORMER 

The maximum-power operating conditions of other 
types of electric machines can be determined by fol- 
lowing the method used for induction motors. Figure 
3 shows the conventional representation of a 
synchronous motor connected through a transformer 
to the three-phase power network. Several of the 
modeling features introduced in the preceding section 
and Fig. 2 continue to apply. The secondary par- 
ameters (R~, X~) are referenced to the transformer 
primary :R~ = kZR2 and X~ = k2Xz. The current in 
the equivalent transformer secondary is almost equal 
to the current in the primary, I~ ~ I, which means 
that the magnetization current and core losses are 
negligible [12]. 
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transformer 

field winding 

i 
ax~o~ ~v 

O ~ I  Rlt ~ R'2t 
I"2=I 

V UI 

\ 

I ' s= I  

--~'/v 

Fig. 3. Synchronous motor with transformer, and the equivalent electrical circuit of the combined system. 

The lower part of Fig. 3 shows the equivalent circuit 
of the system composed of a nonsalient (uniform air- 
gap) synchoronous motor and transformer. In order 
to keep the same current I in the synchoronous motor 
part of the circuit (namely I', = / ) ,  the armature resist- 
ance and synchronous reactance per phase are ref- 
erenced to the transformer primary : R~ = k2Ra and 
X's = ktXs. In these relations R, and X~ are the arma- 
ture resistance per phase and the synchronous reac- 
tance per phase. Finally, it is reasonable to assume 
that the power factor of the synchronous motor is 
approximately equal to 1 and, consequently, the 
power factor of the transformer has the same value. 

The total power drawn from the network is 
3VIcos cp ~ 3VI,  where V a n d / a r e  the effective volt- 
age and current in the transformer primary. Accord- 
ing to the equivalent circuit of Fig. 3, the mechanical 
power output of the motor is 

W = 3 V I - 3 P ~ I  2 - l'~'r- Wcm, (12) 

where Ro is the equivalent resistance of the system, 
P~ = RI + k 2 (R2 + Ra), and Wf and W~m are the mech- 
anical power loss due to shaft friction and air drag, 
and the electromagnetic power loss due to eddy cur- 
rents in the core of the motor. Solving 0 W/OI = O, 
we obtain the following maximum power output and 
optimal current : 

3V 2 V 
l'¢"max = 4Re - ~/ ' f-  ['~/rcrn' /opt - 2R~" (13) 

Once again, the electromechanical conversion 
efficiency at maximum power (r /= Wmax/(3V/)) is 
close to 1/2, because the friction and core losses are 
small in comparison with the power drawn from the 
network, 

1 rCr+w~, l 
q - 2 3 V2/(2R,,) ~ 2" (14) 
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R a 

/ 

Fig. 4. The equivalent electrical circuit of a direct current 
motor. 

The observations made at the end of the section on 
induction motors also apply to the maximum-power 
operation of synchronous motors, and are not 
repeated here. Finally, if the transformer is not present 
in the system of Fig. 3, the maximum power operation 
is represented by equations (13) and (14) with 
Re = &,. 

DIRECT CURRENT MOTOR 

The steady-state operation of a separately excited 
d.c. motor is described [12] by the equivalent circuit 
of Fig. 4 and 

U = E + R ~ I + A U  (15) 

with E = k~n  and k = (p/a), where E, U, R, and I are 
the back electromotive force, the terminal d.c. voltage, 
the resistance of the rotor armature windings, and the 
armature current. The brush contact voltage drop A U 
is small ( ~ 2  V) and will be neglected. In these equa- 
tions, ~, n, p, N and a are the magnetic flux per pole, 
the rotational speed, the number of pole pairs, the 
number of winding conductors, and the number of 
armature circuits in parallel. The mechanical power 
output of the motor is 

l/V" = O l - - R a  12 - [ ' V f -  ~/cm, (16) 

where Wr and W~m are the friction and rotor core 
losses. In the maximization of W with respect to I we 
treat (Wr+ Wc~) as a constant, and obtain, 

U 2 U 
JJY'max = 4 R a  - -  J,~/f -- / ,Vcm, lopt - -  2 R  a ( 1 7 )  

Wma x 1 Wf  ~- J~¢r n 1 
tl - UI 2 U2/(2Ra) ~ 2" (18) 

The optimization of d.c. motors (and any of the 
motor types considered earlier) can be pursued based 
on models that are more refined than the ones used 
in this paper. For example, the assumption that the 
frictional power loss Wt is a constant independent of 

I can be relaxed by noting that, from equation (15), 
the rotational speed decreases slowly as I increases, 
n = ( U - R a l ) / k ~ .  Consequently, in the improved 
model Wf may be written as the sum of two terms, 
one proportional to n 2, accounting for the laminar 
shear flow of the shaft lubricant, and the other pro- 
portional to n b (where 2 < b < 3) to account for the 
turbulent flow in the air gap and between other parts 
of the housing. 

The observations discussed at the end of the section 
on induction motors also apply to d.c. motors. For 
example, the optimal current (17) refers to operation 
well above the temperature limit and admissible arma- 
ture resistance of actual d.c. motor designs. Consider 
as a numerical example the rated values of a com- 
mercial d.c. motor: U =  110 V, I =  30 A, R~ = 0.25 
f2, n = 1500 rev/min, and W =  2700 W. The real 
efficiency of this motor is ~/r = W/(U1) = 2700 W/3300 
W = 0.81. Its total power loss (3300-2700 W = 600 
W) is split between IZRa = 225 W and (Ig/~.+ W~m) = 
375 W. Turning our attention now to equations 
(17) and (18), we find that the optimal current 
(/opt = 220 A) is more than seven times greater than 
the rated current. The maximum power would be 
14/m~x = 11 725 W, with the corresponding efficiency 
q = 0.48. One practical aspect of the maximum-power 
result (17) is that to increase the power output of a 
d.c. machine one must decrease as much as possible 
its resistance, &,. It is worth keeping in mind that in 
practical applications subjected to a maximum opera- 
ting temperature, the maximum efficiency and power 
output are registered when the constant losses (core 
losses) are equal to the variable losses (Joule heating) 
[12]. 

OPERATION SUBJECT TO TEMPERATURE 
CONSTRAINT 

The point made numerically in the above example 
can be illustrated in general terms by reconsidering 
the simple model of an irreversible electrical motor, 
namely the reversible motor with series resistance 
(Fig. 1, left side). The Joule heating generated in the 
resistance R is transferred to the ambient of tem- 
perature To, namely I 2 R =  U A ( T - T o ) .  In this 
expression Tis the operating temperature of the resist- 
ance, and UA is the assumed constant thermal con- 
ductance between the resistance (i.e. windings) and 
ambient air. If the windings are such that Tmax is the 
temperature that cannot be exceeded by the operating 
temperature T, then the 1/2R power loss must satisfy 
the condition, 

12R ~ UA(Zmax- To) (19) 

Equations (1)-(3) and II0 = 0 can be rearranged to 
express in dimensionless form the operation under 
conditions other than maximum power, 

2 - ' ( ' ) 2  ' 
Wrna~ = /opt /o~pt ' r /= l  2Iopt"  
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example of 
teml~mture comtmined operation 

nmxitm~ power o~mdon 

1 
1 -  • ' ~ L 

0 2 
I / I ~ t  

Fig. 5. The power output and efficiency of the simple model 
of Fig. 1 (left side) under conditions other than maximum 

power output. 

These two expressions are plotted in Fig. 5, and 
show once again that maximum power corresponds to 

= 1/2. Expressed in terms of the same dimensionless 
abscissa parameters (l/lop,), the maximum tem- 
perature condition (19) becomes 

I ~< [4R U d ( T m a x -  lll2 
Iop---~ L v~ 2 ro)j . (21) 

As shown in the numerical example that ended the 
section on d.c. motors, the group on the right side can 
be much smaller than I : such temperature constrained 
designs fall to the left of I/Iopt = 1 in Fig. 5. The same 
conclusion can be drawn analytically by combining 
equations (20) and (21) 

1 [ 4 R  ql/2 1 
r I >~ 1 - 2[_-~1 U A ( T m a x -  To)J > ~. (22) 

In conclusion, maximum power operation at 
maximum temperature is achieved on the left side of 
the if- peak (Fig. 5), at the current I calculated based 
on equation (21) with equal sign. The more stringent 
the temperature constraint, the lower the power out- 
put and the higher the efficiency. 

ELECTRICAL POWER GENERATOR 

Our main objective in this paper was to extend to 
electric machines the maximum-power optimization 
method that was developed for heat engines. The four 
models analyzed until now were all motors, i.e. con- 
verters of electrical work into mechanical work. In this 
section we consider the reverse application, namely a 
generator of electrical power. The model is shown in 

Fig. 6 : the actual generator is composed of a reversible 
generator in series with its own resistance (e.g. arma- 
ture resistance). The electrical power generator is 
driven by the mechanical power delivered by an irre- 
versible heat engine operating between/'1 and To. The 
heat engine can be modeled in several ways [1], by 
accounting for the major irreversibility mechanisms 
of the engine. The key question is whether the gen- 
erator and the heat engine should be optimized as an 
ensemble, or separately. Let Idzs be the shaft power 
received by the generator from the heat engine, 
l ~  s = VxL The electrical power output, ~ = G L  can 
also be written as 

• /I,¢'~V 
: (23) 

\ v : /  

First, we may regard V2 as fixed and maximize We 
with respect to #~ (or / )  : the results, 

l'~rs opt V2 171/re max l~s opt (24)  
' - 2 R '  ' = ~  ' 

show that the conversion efficiency is 1/2, and that the 
maximum electrical power output is proportional to 
the mechanical power delivered by the heat engine. 
This means that for maximum electrical power output 
the heat engine too must be designed for maximum 
power, and that the heat engine optimization can be 
performed separately. In other words, all the 
maximum power results that have been developed for 
heat engines [1] are relevant to the maximization of 
power output from electrical generators. 

Second, we may regard the output voltage Vt as 
fixed, and rewrite I~ s = /2R + We as 

R+ wo. (25) w~ t,v,/ 

Equation (24) shows that the electrical power output 
varies monotonically with the shaft power input. The 
preceding conclusions continue to apply: maximum 
electrical power output demands maximum mech- 
anical power from the heat engine, the generator and 
the engine can be optimized separately, and the results 
developed for heat engines can be used for electrical 
power generators driven by heat engines. 

CONCLUSION 

In this paper we have established a direct analogy 
between the optimization of irreversible heat engines 
and the optimization of electrical motors and power 
generators. We showed that maximum mechanical 
power output is achieved when the electromechanical 
conversion efficiency is approximately equal to 1/2. 
This conclusion is independent of the motor type : we 
reached it using the two-component model of Fig. 1 
(left side), the induction motor and transformer model 
of Fig. 2, the synchronous motor and transformer 
model of Fig. 3 and the direct current motor model of 
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V2( 
electrica 1 

sistance 

V1 I, We 

Ws ~ reversible 
electrical 
generator 

ground 

Irreversible Heat Irreversible Electrical 
Engine Model Generator Model 

Fig. 6. Model of an irreversible electrical power generator driven by an irreversible heat engine. 

Fig. 4. Present motor designs are constrained by the 
maximum operating temperature of the windings. 
Their power output  is lower than the maximum, and 
the efficiency is higher than 1/2. Electrical power gen- 
erators can also be optimized for maximum power 
output. This can be accomplished by optimizing sep- 
arately the electrical power generator and the heat 
engine that drives it. 

In summary, we have extended to electrical 
machines the fundamental  modeling and optimization 
method based on combined thermodynamics and heat 
transfer [1, 6]. An unexpected payofffrom the analogy 
constructed in this paper is the observation that the 
well-known heat engine model (Fig. 1, right side) is 
incomplete because it does not  show the system (e.g. 
hardware) that delivers the freely-varying heat input 
Q. It is true that on the left side of Fig. 1, the current 
I can be varied during the maximization of W because 
it is drawn from an electric power network assumed 
infinite in its capacity of serving as a current supply, 
There is no such network (infinite, high-temperature 
"heat" supply) to which we might connect the top end 
of the right side of Fig. 1. A complete thermodynamic 
optimization of the heat engine model must take into 
account the finite resources (e.g. fuel) that are respon- 
sible for the assumed variable heat input. This impor- 
tant and usually overlooked aspect of heat engine 
thermodynamics is discussed further in Refs [1, pp. 
227-232] and Ref. [13]. 
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